A large mainshock triggers numerous aftershocks. Large aftershocks can cause additional damage and disruption to buildings and infrastructure in a post-disaster situation. This study investigates the effects of aftershocks on peak ductility demand of elastic-perfectly-plastic single-degree-of-freedom systems using real as well as artificial mainshock-aftershock sequences. First, empirical assessment of the incremental peak nonlinear response due to aftershocks is conducted by using real mainshoc
A large mainshock triggers numerous aftershocks. Large aftershocks can cause additional damage and disruption to buildings and infrastructure in a post-disaster situation. This study investigates the effects of aftershocks on peak ductility demand of elastic-perfectly-plastic single-degree-of-freedom systems using real as well as artificial mainshock-aftershock sequences. First, empirical assessment of the incremental peak nonlinear response due to aftershocks is conducted by using real mainshoc